Class Name: 8A-A
Student Name :

Instructor Name: Ms. Ryan
Instructor Note :

1. Graph the line.

$$
y=\frac{3}{2} x
$$

2. Graph the line.

$$
y=2 x
$$

3. Graph the line.

$$
y=-4 x
$$

4. Graph the line.

$$
y=\frac{1}{3} x
$$

5. Graph the line.

$$
y=x
$$

6. A freight train is carrying goods across the country. The distance it has traveled varies directly with the number of gallons of fuel it has used. See the graph below.

Number of gallons used
(a) How many gallons does the train use per mile?
\square gallon(s)
(b) What is the slope of the graph?
7. Laura is riding her bike. The distance she travels varies directly with the number of revolutions (turns) her wheels make. See the graph below.

Number of revolutions
(a) How far does Laura travel per revolution?
\square feet
(b) What is the slope of the graph?
8. Debra is running. The number of calories she has burned varies directly with the number of minutes she has run. See the graph below.

Number of minutes
(a) How many minutes does Debra run per calorie burned?
\square minute(s)
(b) What is the slope of the graph?
9. Suppose that y varies directly with x, and $y=21$ when $x=3$.
(a) Write a direct variation equation that relates x and y. Equation:
(b) Find y when $x=-2$.

$$
y=
$$

10. Suppose that y varies directly with x, and $y=8$ when $x=20$.
(a) Write a direct variation equation that relates x and y. Equation:
(b) Find y when $x=7$.

$$
y=
$$

11. Suppose that y varies directly with x, and $y=15$ when $x=6$.
(a) Write a direct variation equation that relates x and y. Equation:
(b) Find y when $x=8$.

$$
y=
$$

12. Suppose that y varies directly with x, and $y=2$ when $x=16$.
(a) Write a direct variation equation that relates x and y. Equation:
(b) Find y when $x=7$.
$y=$
13. For each equation, determine whether it shows a direct variation (that is, shows directly proportional variables).

If it does, find the constant of variation and write it in simplest form.

$$
\begin{aligned}
& 5 x-8 y=0 \\
& \text { O Direct variation } \\
& \quad \text { Constant of variation: } k=\square \\
& 0 \text { Not direct variation } \\
& 4 y=5 x \\
& \text { Direct variation } \\
& \quad \text { Constant of variation: } \quad k=\square \\
& \text { O Not direct variation }
\end{aligned}
$$

14. For each equation, determine whether it shows a direct variation (that is, shows directly proportional variables).

If it does, find the constant of variation and write it in simplest form.

$$
-5 y=-2 x
$$

© Direct variation
Constant of variation: $\quad k=\square$
© Not direct variation
$5 x+4 y=-9$
o Direct variation
Constant of variation: $\quad k=\square$
© Not direct variation
15. For each equation, determine whether it shows a direct variation (that is, shows directly proportional variables).

If it does, find the constant of variation and write it in simplest form.

$$
\begin{aligned}
& \begin{array}{l}
4 x=3 y-7 \\
\text { O Direct variation } \\
\text { Constant of variation: } k=\square \\
0 \text { Not direct variation } \\
2 y=16 x \\
\text { Direct variation } \\
\text { Constant of variation: } \quad k=\square
\end{array} \\
& \text { Not direct variation }
\end{aligned}
$$

